Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Vis Exp ; (204)2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38407295

RESUMO

Tissue-specific neural stem cells (NSCs) remain active in the mammalian postnatal brain. They reside in specialized niches, where they generate new neurons and glia. One such niche is the subependymal zone (SEZ; also called the ventricular-subventricular zone), which is located across the lateral walls of the lateral ventricles, adjacent to the ependymal cell layer. Oligodendrocyte progenitor cells (OPCs) are abundantly distributed throughout the central nervous system, constituting a pool of proliferative progenitor cells that can generate oligodendrocytes. Both NSCs and OPCs exhibit self-renewal potential and quiescence/activation cycles. Due to their location, the isolation and experimental investigation of these cells is performed postmortem. Here, we describe in detail "brain milking", a method for the isolation of NSCs and OPCs, amongst other cells, from live animals. This is a two-step protocol designed for use in rodents and tested in rats. First, cells are "released" from the tissue via stereotaxic intracerebroventricular (i.c.v.) injection of a "release cocktail". The main components are neuraminidase, which targets ependymal cells and induces ventricular wall denudation, an integrin-ß1-blocking antibody, and fibroblast growth factor-2. At a second "collection" step, liquid biopsies of cerebrospinal fluid are performed from the cisterna magna, in anesthetized rats without the need of an incision. Results presented here show that isolated cells retain their endogenous profile and that NSCs of the SEZ preserve their quiescence. The denudation of the ependymal layer is restricted to the anatomical level of injection and the protocol (release and collection) is tolerated well  by the animals. This novel approach paves the way for performing longitudinal studies of endogenous neurogenesis and gliogenesis in experimental animals.


Assuntos
Células-Tronco Neurais , Células Precursoras de Oligodendrócitos , Ratos , Animais , Encéfalo , Sistema Nervoso Central , Neuroglia , Mamíferos
2.
Int J Dev Biol ; 66(1-2-3): 51-58, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35238392

RESUMO

In the postnatal mammalian brain, neurogenic activity is retained in anatomically restricted areas, driven by pools of Neural Stem Cells (NSCs). These cells and their progeny have been studied intensively as potential targets for regenerative treatments, aiming at either their in situ manipulation or their use as sources of cells for transplantation-based strategies. Although their full identity, heterogeneity and differentiation potential remain elusive, due to the absence of specific cell-type markers, our knowledge of their properties is constantly expanding. Here, we focus on the NSC niche that is located at the Subependymal Zone (SEZ/ also known as Subventricular Zone) of the lateral ventricles of the brain. We review, summarize and explain the different faces of the NSC, as they have been described, using a wide range of experimental approaches, over a time-frame of three decades: the primitive, definitive, quiescent or activated NSC. We also review the growing evidence of the existence of latent NSCs outside of niches, in the brain parenchyma, that constitute promising new therapeutic targets, complemented by the novel technologies of in vivo cell reprogramming.


Assuntos
Células-Tronco Neurais , Nicho de Células-Tronco , Animais , Encéfalo , Ventrículos Laterais , Mamíferos , Neurogênese
3.
Stem Cell Reports ; 16(10): 2534-2547, 2021 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-34560001

RESUMO

Postnatal brain neural stem and progenitor cells (NSPCs) cluster in anatomically inaccessible stem cell niches, such as the subependymal zone (SEZ). Here, we describe a method for the isolation of NSPCs from live animals, which we term "milking." The intracerebroventricular injection of a release cocktail, containing neuraminidase, integrin-ß1-blocking antibody, and fibroblast growth factor 2, induces the controlled flow of NSPCs in the cerebrospinal fluid, where they are collected via liquid biopsies. Isolated cells retain key in vivo self-renewal properties and their cell-type profile reflects the cell composition of their source area, while the function of the niche is sustained even 8 months post-milking. By changing the target area more caudally, we also isolate oligodendrocyte progenitor cells (OPCs) from the corpus callosum. This novel approach for sampling NSPCs and OPCs paves the way for performing longitudinal studies in experimental animals, for more in vivo relevant cell culture assays, and for future clinical neuro-regenerative applications.


Assuntos
Técnicas de Cultura de Células/métodos , Células-Tronco Neurais/metabolismo , Células Precursoras de Oligodendrócitos/metabolismo , Animais , Encéfalo , Diferenciação Celular , Líquido Cefalorraquidiano , Corpo Caloso , Humanos , Biópsia Líquida , Masculino , Ratos , Ratos Long-Evans , Ratos Sprague-Dawley , Ratos Wistar , Nicho de Células-Tronco
4.
Stem Cell Res Ther ; 12(1): 335, 2021 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-34112234

RESUMO

BACKGROUND: Loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc) underlines much of the pathology of Parkinson's disease (PD), but the existence of an endogenous neurogenic system that could be targeted as a therapeutic strategy has been controversial. BNN-20 is a synthetic, BDNF-mimicking, microneurotrophin that we previously showed to exhibit a pleiotropic neuroprotective effect on the dopaminergic neurons of the SNpc in the "weaver" mouse model of PD. Here, we assessed its potential effects on neurogenesis. METHODS: We quantified total numbers of dopaminergic neurons in the SNpc of wild-type and "weaver" mice, with or without administration of BNN-20, and we employed BrdU labelling and intracerebroventricular injections of DiI to evaluate the existence of dopaminergic neurogenesis in the SNpc and to assess the origin of newborn dopaminergic neurons. The in vivo experiments were complemented by in vitro proliferation/differentiation assays of adult neural stem cells (NSCs) isolated from the substantia nigra and the subependymal zone (SEZ) stem cell niche to further characterize the effects of BNN-20. RESULTS: Our analysis revealed the existence of a low-rate turnover of dopaminergic neurons in the normal SNpc and showed, using three independent lines of experiments (stereologic cell counts, BrdU and DiI tracing), that the administration of BNN-20 leads to increased neurogenesis in the SNpc and to partial reversal of dopaminergic cell loss. The newly born dopaminergic neurons, that are partially originated from the SEZ, follow the typical nigral maturation pathway, expressing the transcription factor FoxA2. Importantly, the pro-cytogenic effects of BNN-20 were very strong in the SNpc, but were absent in other brain areas such as the cortex or the stem cell niche of the hippocampus. Moreover, although the in vitro assays showed that BNN-20 enhances the differentiation of NSCs towards glia and neurons, its in vivo administration stimulated only neurogenesis. CONCLUSIONS: Our results demonstrate the existence of a neurogenic system in the SNpc that can be manipulated in order to regenerate the depleted dopaminergic cell population in the "weaver" PD mouse model. Microneurotrophin BNN-20 emerges as an excellent candidate for future PD cell replacement therapies, due to its area-specific, pro-neurogenic effects.


Assuntos
Neurogênese , Substância Negra , Animais , Dopamina , Neurônios Dopaminérgicos , Homeostase , Camundongos
5.
Environ Monit Assess ; 191(8): 509, 2019 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-31342188

RESUMO

The aim of this paper is to provide a methodology including statistical tools and spatial techniques, in order to identify the various potential sources of chromium (Crtot) in the Sarigkiol basin, Western Macedonia, Greece, where elevated concentrations of Crtot in groundwater have been recorded since 1996. Integrated hydrochemical approach and statistical analyses including Pearson's correlation coefficient, multivariate statistical analyses (factor analysis and hierarchical cluster analysis), and spatial techniques (Moran's I spatial autocorrelation index and bivariate local indicator spatial association cluster map) were applied to evaluate the chemical analyses of 73 water samples, from irrigation wells, natural springs, and surface water. Both natural and anthropogenic sources of Crtot were recorded; the first (ultramafic-dominated environment) is strongly depicted on the natural spring water, in which Crtot concentrations as high as ~ 130 µg/L were recorded, whereas the second (agricultural activities) acts synergistically in the irrigation wells of the Sarigkiol basin, in which strong correlations of Crtot, P, and NO3- were defined. The paper highlights its findings by outlining the potential sources of elevated concentrations of Cr6+ in the Sarigkiol basin, stressing the need for a closer attention on the role of agricultural activities as an important, though commonly neglected, anthropogenic source of Crtot in groundwater.


Assuntos
Cromo/análise , Monitoramento Ambiental/métodos , Água Subterrânea/química , Rios/química , Poluentes Químicos da Água/análise , Poços de Água , Agricultura , Monitoramento Ambiental/estatística & dados numéricos , Grécia , Análise Multivariada , Análise Espacial
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...